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***NOTE: Problems not specifically asking for FBD, EOM, etc, in the question, yet providing points to 
them as part of the solution, are to have points redistributed within the question should students provide 
a solution that does not include them.*** 

 
Q1 

Figure Q1 shows a slider-crank mechanism in which a motor drives crank AB about a 
fixed axis at A causing connecting rod BC to exhibit general plane motion and the slider 

at C to translate in the vertical direction. The relevant dimensions of the links are shown 

in the figure.  At the instant shown angle 63.13= , the crank AB has constant angular 

speed rpm 100= , the connecting rod BC has angular velocity rad/s 5405.2=BC  and the 

slider has velocity m/s 9209.0=v . 

 

(i) The acceleration of C is calculated using the following vector equation: 

 
t

CB

n

CBBC aaaa ++=     (2)    [1] 

 

Where 

 
The angular velocity of the crank AB in rad/s is: rad/s4720.1060/2100 =x   

[1] 

 

The magnitudes are: 

 
222 m/s9663.10)4720.10)(1.0( === ABaB     [1] 

222 m/s9362.1)5405.2)(3.0( === BC

n

CB BCa      [1] 

BCBC

t

CB BCa  )3.0(==        [1] 

 

Directions of acceleration components (see diagram)     

[3]  

 

Resolving equation (2) parallel to BC gives: 

 

 

 

A 
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n

CBC aABa ++= )45cos(cos 2        [3] 

 

Re-arranging and substituting values gives: 

 

2
2

m/s8660.7
)633.13cos(

9362.1)633.1345cos(9663.10

cos

)45cos(
=

++
=

++
=



 n

CB
C

aAB
a  

 

[1] 

 

Slider accelerates vertically downwards     [1] 

 

Resolving equation (2) vertically gives: 

 

 sincos)45cos(2 t

CB

n

CBC aaABa ++=      [2] 

 

Rearranging and substituting values gives: 

 

2

2

rad/s15.25

)633.13sin()3.0(

)633.13cos(9362.1)45cos(9663.108579.7

sin

cos)45cos(

−=

−−
=

−−
=






BC

aABa n

CBC
BC

  

        [2] 

 

i.e. the angular acceleration of link BC is 25.5rad/s2  in the anti-clockwise direction 

          [1] 

[Total part a) = 18 marks] 

 

(ii) Free body diagrams  

 

 
[Total part b) = 6 marks] 
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(iii) Using D’Alembert’s Principle for the piston gives: 

 

0=− cpistony amC         [1] 

 Re-arranging and substituting values gives: 

N 8660.78860.7x1 ==yC        [1] 

  

 Using D’Alembert’s Principle for the connecting rod, taking moments about B gives: 

0sincos =+−−  BCCBCCJ yxBCB      [2] 

Re-arranging and substituting values gives: 

N44.174
)633.13cos(x3.0

15.252)633.13sin(x3.0x8860.7

cos

sin
=

+
=

−
=

x

BC

JBCC
C

BCBy

x



 

          [2] 

[Total part b) = 6 marks] 
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Q2 

1. The block diagram for an open loop system is shown in figure 1. 

 
Figure 1 

(i) For J=2 and k=6, calculate the value of C that will result in a critically damped 

system. 

[5 marks] 

Solution: 

To be critically damped (𝛾 = 1), 𝐽𝑠2 + 𝐶𝑠 + 𝑘 = 𝐽(𝑠2 + 2𝛾𝜔𝑠 + 𝜔2) must be such that if 
𝑘

𝑗
=

𝜔2then 
𝐶

𝐽
= 2𝛾𝜔 = 2𝜔 and 

𝐶 = 2√𝑘𝐽 

Hence 𝐶 = 2√12 =6.93 

 

(ii) Calculate the natural frequency of the system. 

[5 marks] 

Solution: 

From part (a), 𝐽𝑠2 + 𝐶𝑠 + 𝑘 = 𝐽(𝑠2 + 2𝛾𝜔𝑠 + 𝜔2) so 
𝑘

𝑗
= 𝜔2 and 

𝜔 = √3 = 1.73 

(iii)For a step input given by Θ𝑖𝑛(𝑠) = 2
𝑠⁄ , calculate the magnitude of the steady state error defined as: 

𝐸𝑠𝑠 = lim
𝑡→∞

(𝜃𝑖𝑛(𝑡) − 𝜃𝑜𝑢𝑡(𝑡)) 

[5 marks] 

Hint: 

Function Laplace Transform 

 1 − 𝜔𝑡𝑒−𝜔𝑡 𝜔2

𝑠(𝑠2 + 2𝜔𝑠 + 𝜔2)
 

 

Solution: 

Magnitude can be calculated either from reverse Laplace transforms or using the final value 

theorem. 

Reverse Laplace transforms: 

Θ𝑜𝑢𝑡(𝑠) = Θ𝑖𝑛(𝑠)
1

𝐽𝑠2 + 𝐶𝑠 + 𝑘
=

2

𝑠(2𝑠2 + 6.93𝑠 + 6)
=

1

𝑠(𝑠2 + 3.47𝑠 + 3)
 

1

𝑠(𝑠2 + 3.47𝑠 + 3)
=

1

3
(

𝜔2

𝑠(𝑠2 + 2𝜔𝑠 + 𝜔2)
) 

Where 𝜔 = √3 and 𝛾 = 1 

Becomes 

θ𝑜𝑢𝑡(𝑡) =
1

3
( 1 − 𝜔𝑡𝑒−𝜔𝑡) 

Hence, steady state error is given by: 

lim
𝑡→∞

(𝜃𝑖𝑛(𝑡) − 𝜃𝑜𝑢𝑡(𝑡)) = 2 −
1

3
=

5

3
𝑜𝑟1.67 

By final value theorem: 

1

𝐽𝑠2 + 𝐶𝑠 + 𝑘
 

Θ𝑖𝑛(𝑠) Θ𝑜𝑢𝑡(𝑠) 
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lim
𝑡→∞

(𝜃𝑜𝑢𝑡(𝑡)) = lim
𝑠→0

(𝑠Θ𝑜𝑢𝑡(𝑠)) = lim
𝑠→0

(
2𝑠

𝑠(2𝑠2 + 6.93𝑠 + 6)
) =

1

3
 

Hence steady state error is  

lim
𝑠→0

(𝑠Θ𝑖𝑛(𝑠) − 𝑠Θ𝑜𝑢𝑡(𝑠)) = lim
𝑠→0

(
2𝑠

𝑠
−

2𝑠

𝑠(2𝑠2 + 6.93𝑠 + 6)
) = 2 −

1

3
= 1.67 

(5 marks for correct answer, 3 marks for a correct calculation of lim
𝑡→∞

(𝜃𝑜𝑢𝑡(𝑡)) if the steady state 

error is incorrect. 

 

 

The open loop system in Figure Q2 is then incorporated into a closed loop system as shown in 

Figure Q2. 

 
Figure Q3 

(iv) What is the overall transfer function, 𝐺(𝑠) =
Θ𝑜𝑢𝑡(𝑠)

Θ𝑖𝑛(𝑠)
 for the system shown in Figure Q3? 

[5 marks] 

Solution: 

Θ𝑜𝑢𝑡(𝑠) = (Θ𝑖𝑛(𝑠) − Θ𝑜𝑢𝑡(𝑠))
𝐷𝑠2 + 𝑃𝑠 + 𝐼

𝑠(𝐽𝑠2 + 𝐶𝑠 + 𝑘)
 

Θ𝑜𝑢𝑡(𝑠) (1 +
𝐷𝑠2 + 𝑃𝑠 + 𝐼

𝑠(𝐽𝑠2 + 𝐶𝑠 + 𝑘)
) = Θ𝑖𝑛(𝑠)

𝐷𝑠2 + 𝑃𝑠 + 𝐼

𝑠(𝐽𝑠2 + 𝐶𝑠 + 𝑘)
 

Θ𝑜𝑢𝑡(𝑠)(𝑠(𝐽𝑠2 + 𝐶𝑠 + 𝑘) + 𝐷𝑠2 + 𝑃𝑠 + 𝐼) = Θ𝑖𝑛(𝑠)(𝐷𝑠2 + 𝑃𝑠 + 𝐼) 

Θ𝑜𝑢𝑡(𝑠)

Θ𝑖𝑛(𝑠)
=

𝐷𝑠2 + 𝑃𝑠 + 𝐼

𝐽𝑠3 + (𝐶 + 𝐷)𝑠2 + (𝑃 + 𝑘)𝑠 + 𝐼
 

 

(v) For the values of P, D, I, J and k given in table 1, calculate the range of values of C for which the 

system will be stable. 

P D I J k 

2 1 10 2 6 

Table 1 

[10 marks] 

 

Routh-Hurwitz Criteria: No change of sign so C>-1; (worth 4) 
 

 

  

1

𝑠2 + 𝐶𝑠 + 𝑘
 

Θ𝑖𝑛(𝑠) Θ𝑜𝑢𝑡(𝑠) 𝐷𝑠2 + 𝑃𝑠 + 𝐼

𝑠
 

+ 

- 
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Q3 
 

FIGURE Q# shows a rigid bar 𝐴𝐵 which pivots about fixed point 𝑂. 

 
DATA 

𝐼𝑂 = 0.5 kg m2 

𝐿1 = 0.4 m 

𝐿2 = 0.6 m 

𝐾1 = 1000 N/m 

𝐾2 = 1000 N/m 

𝑐 = 50 Ns/m 

 
 

 
 
 Figure Q# 

 
(i) Draw a fully annotated Free Body Diagram for the bar.       [4] 

 
Don’t forget the spring and damper are linear, so in the FBD below they show as linear forces, but when 
transferring to EOM in part b) they’ll need to become torques.  

 

 
 

(ii) Derive the equation of motion governing rotation of the beam θ(t) about pivot O. 
[3] 

Relationships for linear displacements at springs to rotational displacements (students may have included 
this in part A). 

𝑥𝐴 = 𝐿1𝜃 

𝑥̇𝐴 = 𝐿1𝜃̇ 
 

𝑥𝐵 = 𝐿2𝜃 
 
 
Keeping in mind the forces shown in the diagram for the spring and damper are linear, so they will have to 
be converted to torques the EOM now becomes… 

𝐼𝑜𝜃̈ = −𝐶𝐿1
2𝜃̇ − 𝐾2𝐿2

2𝜃 − 𝐾1𝐿1
2𝜃 

 

𝐼𝑜𝜃̈ + 𝐶𝐿1
2𝜃̇ + (𝐾1𝐿1

2 + 𝐾2𝐿2
2 )𝜃 = 0 

 

𝐿1 𝐿2 

𝐾1 𝐾2 
𝐵 𝐴 

𝑂 
𝑐 

θ 
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0.5𝜃̈ + 8𝜃̇ + 520𝜃 = 0 
[1pt for newton’s; 1 pt for in correct form; 1 pt for correct derivation] 

 

(iii) Calculate the undamped natural frequency ωn and damping ratio ʓ for the system.
 [4] 

[2 pts each] 

ωn = √
𝐾1𝐿1

2 + 𝐾2𝐿2
2

𝐼𝑜
=  32.25

𝑟𝑎𝑑

𝑠
= 5.133𝐻𝑧 

 

𝛾 =
𝐶𝐿1

2

2√(𝐾1𝐿1
2+𝐾2𝐿2

2 )𝐼𝑜

=0.25 

 

(iv) The end B is lifted up by 0.05 m and the bar is then released from rest.  Determine 
the resulting transient angular displacement at O as a function of time, 𝜃𝑡𝑟(𝑡).  

[6] 
The damping ratio is less than 1, so this is an underdamped system and the following equations apply from 
the formula sheet. 
 

𝑧(𝑡)𝑡𝑟   =   𝑒−𝛾𝜔𝑛𝑡[𝐵1 𝑐𝑜𝑠( 𝛺𝑛𝑡) +  𝐵2 𝑠𝑖𝑛( 𝛺𝑛𝑡)]  
 

𝑧̇(𝑡)𝑡𝑟 = 𝐵1𝑒−𝛾𝜔𝑛𝑡[−Ω𝑛𝑠𝑖𝑛(Ω𝑛𝑡) − 𝛾𝜔𝑛𝑐𝑜𝑠(Ω𝑛𝑡)] + 𝐵2𝑒−𝛾𝜔𝑛𝑡[Ω𝑛𝑐𝑜𝑠(Ω𝑛𝑡) − 𝛾𝜔𝑛𝑠𝑖𝑛(Ω𝑛𝑡)] 
 
Where  

𝛺𝑛   =   𝜔𝑑 = 𝜔𝑛√1 − 𝛾2 = 31.24
𝑟𝑎𝑑

𝑠
 

 [1 pt] 
 

For initial conditions where xo=0.05m at point A the rotation will be 𝜃𝑜 =
0.05

𝐿2
= 0.0833 𝑟𝑎𝑑 and 𝑡 = 0. 

 
𝜃(𝑡)𝑡𝑟   = 0.0833 =  1[𝐵1 ∗ 1 +  𝐵2 ∗ 0)]  

𝐵1 = 0.08333  
[1] 

For initial conditions where 𝜃̇(0)𝑡𝑟 = 0 and 𝑡 = 0. 
 

𝜃̇(𝑡)𝑡𝑟 = 0 = 0.1[−𝛾𝜔𝑛] + 𝐵2[Ω𝑛] 

𝐵2 =
0.1𝛾𝜔𝑛

𝜔𝑛√1 − 𝛾2
= 0.0213 

[3] 
Therefore  

𝜃(𝑡)𝑡𝑟 = 𝑒−8𝑡[0.08333 𝑐𝑜𝑠( 31.24𝑡) +  0.02134 𝑠𝑖𝑛( 31.24𝑡)]  
[1] 

 

(v) What frequency will this system vibrate at after being released from rest?  [2] 
 
Should have been calculated above, but for completeness to reporting in Hz the vibration frequency of the 
system will be: 

𝛺𝑛   =   𝜔𝑑 = 𝜔𝑛√1 − 𝛾2 = 31.24
𝑟𝑎𝑑

𝑠
= 4.97 𝐻𝑧 

 [only 1pt if not in Hz] 
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(vi) For the subsequent vibration, calculate the speed of end B when it first passes 
through the equilibrium position.     [6; either solution is ok] 

Using the exact solution... 

𝜃(𝑡)𝑡𝑟 = 0 

When 

0.08333 𝑐𝑜𝑠( 31.24𝑡) +  0.02134 𝑠𝑖𝑛( 31.24𝑡) = 0 

Or  

𝑡𝑎𝑛(31.24𝑡) =
0.08333

0.02134
 

Therefore  

t=0.0423 s 

Hence  

𝜃̇ = −1.917 𝑟𝑎𝑑/𝑠 

𝑥̇𝐵 = 𝐿2𝜃̇ = −1.150 𝑚/𝑠 

 

Using the approximate solution... 

The approximate solution is that this occurs at ¼ of the cycle. E.g. when  

𝛺𝑛𝑡 =
𝜋

2
 

Using this approximation and the equations from part (iv) for 𝛺𝑛 and 𝜃(𝑡)𝑡𝑟 results in... 

𝑡 = 0.0503𝑠 

𝜃̇ = −1.856 𝑟𝑎𝑑/𝑠 

 

𝑥̇𝐵 = 𝐿2𝜃̇ = −1.113 𝑚/𝑠 
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Q4 

Figure Q# shows a uniform beam of length, L , density  , Young’s modulus of elasticity 

E , and second moment of area I .  One end of the beam is clamped, while the other end 
is connected to a spring of stiffness, k, as shown.  

 
(i) Using boundary conditions determine the generalized matrix, [Z]{C}={0}, 

that could be used to solve for undamped natural frequencies and mode 

shapes of the beam. Note: It is not required for you to solve for the 
constants {C}, only show the generalized matrix and terms contained in [Z].  

[13] 
Solutions by hand due to time constraints. 
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+2 

+2 

+2 
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+4 

+2 
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+1 
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(ii) Provide simple sketches for the first two modes of vibration. [2] 
 
 
I couldn’t get my drawing pad to work, so excuse the poor drawing skills, but you should get the idea. 
 
 

 


